The Melbourne Mobile Stroke Unit
Tenecteplase versus Alteplase for Stroke Thrombolysis Evaluation in the Ambulance Trial

TASTE-A: a randomised clinical trial

Andrew Bivard, Henry Zhao, Leonid Churilov, Bruce C.V. Campbell, Skye Coote, Nawaf Yassi, Bernard Yan, Michael Valente, Angelos Sharobeam, Anna H Balabanski, Angela Dos Santos, Jo Lyn Ng, Vignan Yogendrakumar, Felix Ng, Francesca Langenberg, Damien Easton, Alex Warwick, Elizabeth Mackey, Amy MacDonald, Gagan Sharma, Michael Stephenson, Karen Smith, David Anderson, Philip Choi, Vincent Thijs, Henry Ma, Geoffrey C Cloud, Tissa Wijeratne, Liudmyla Olenko, Dominic Italiano, Stephen M. Davis, Geoffrey A. Donnan, and Mark W. Parsons, on behalf of the TASTE-A collaborators.
Introduction

- Mobile Stroke Units (MSU) equipped with a CT-scanner reduce time to thrombolytic treatment and improve patient outcomes.
 - The Melbourne MSU is staffed by a neurologist, a stroke nurse, a radiographer and two paramedics.

- There is increasing evidence for the use of tenecteplase as a front-line thrombolytic agent for acute ischemic stroke, for multiple reasons:
 - High fibrin specificity
 - Improved PAI-1 resistance
 - Can be administered as a single bolus allowing rapid treatment, ideal for the MSU.

- We sought to test the hypothesis that ultra-early pre-hospital treatment with tenecteplase on an MSU would result in superior early reperfusion compared to alteplase.
The primary outcome of the CT-perfusion lesion volume, was significantly smaller in patients treated with tenecteplase.

- Tenecteplase median 12mL, Q1, Q3: 3, 28mL
- Alteplase median 35mL Q1, Q3: 18, 76mL
- Adjusted Incidence Rate Ratio 0.55, 95% CI: 0.37, 0.81; p=0.003.

The results were maintained in the pre-specified robustness analysis.

Figure 1. Perfusion lesion volume on Computed Tomography Perfusion imaging performed on arrival at the receiving hospital by treatment group.
Secondary outcomes

<table>
<thead>
<tr>
<th>Variable</th>
<th>tPA group (N = 49)</th>
<th>TNK group (N = 55)</th>
<th>Effect Size* (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduction in NIHSS between pre-treatment and on arrival at the receiving hospital, median (Q1, Q3)</td>
<td>0 (0, 3)</td>
<td>1 (0, 6)</td>
<td>1 (0·11, 1·9)</td>
<td>0·03</td>
</tr>
<tr>
<td>Time from MSU arrival to MSU imaging (min), median (Q1, Q3)</td>
<td>16 (14, 21)</td>
<td>N = 54</td>
<td>-0·01 (-2·98, 2·95)</td>
<td>0·99</td>
</tr>
<tr>
<td>Time from MSU imaging to treatment (min), median (Q1, Q3)</td>
<td>19 (14·5, 26·8)</td>
<td>13 (9·4, 18·2)</td>
<td>-6·1 (-9·6, -2·6)</td>
<td>0·001</td>
</tr>
<tr>
<td>Time from MSU arrival to treatment (min), median (Q1, Q3)</td>
<td>37 (32, 43)</td>
<td>N = 54</td>
<td>-7 (-11·9, -2·11)</td>
<td>0·01</td>
</tr>
<tr>
<td>Time from MSU arrival to ED arrival (min), median (Q1, Q3)</td>
<td>64 (59, 77)</td>
<td>N = 54</td>
<td>-1 (-7·8, 5·8)</td>
<td>0·77</td>
</tr>
</tbody>
</table>
In the first pre-hospital randomised controlled trial of thrombolytic for ischemic stroke patients, treatment with intravenous tenecteplase on the Melbourne Mobile Stroke Unit resulted in:

- Substantially smaller post-treatment perfusion lesion,
- Greater ultra-early clinical recovery, and was
- Faster initiation of treatment compared to patients treated with intravenous alteplase
- No safety concerns
- No differences in the incidence of symptomatic cerebral haemorrhage
- No differences in the incidence of death or severe disability